PHOTO-OXIDATION OF SOME CARBINOLS BY THE Ru(II) POLYPYRIDYL COMPLEX-ARYL DIAZONIUM SALT SYSTEM

Herminia Cano-Yelo and Alain Deronzier

Laboratoires de Chimie, Laboratoire d'Electrochimie Organique et Analytique (LA CNRS 321) Département de Recherche Fondamentale, Centre d'Etudes Nucléaires de Grenoble, 85 x, F-38041 GRENOBLE CEDEX, France

<u>Summary</u> : The Ru(II) polypyridyl complex <u>2</u> effectively catalyzed the photo-oxidation by visible light of some carbinols to aldehydes in presence of a diazonium salt as quencher and a basic agent in acetonitrile.

We have recently ^{1,2} reported that aryl diazonium salts quench efficiently the excited state of the polypyridyl ruthenium(II) complexes such as $\operatorname{Ru}(\operatorname{bpy})_3^{2+}$ (bpy = 2,2'-bipyridine) and lead to the quantitative build up of the strong oxidizing species $\operatorname{Ru}(\operatorname{bpy})_3^{3+}$ in acetonitrile. In this communication, we report the utilization of this system to photocatalyze the oxidation of some carbinols to their corresponding aldehydes by a photoredox cycle mechanism.

Irradiation with visible light ($\lambda > 410 \text{ nm}$) of a solution of carbinols $\underline{1}$ a-e (5 x 10^{-3} M) in dry acetonitrile free of oxygen containing the complex 3 RuL $_{3}^{2+}$ $\underline{2}$ (2-4 x 10^{-4} M), the diazonium salt of 2-aminobenzophenone $\underline{3}$ (1.5 x 10^{-2} M) as a quencher with

a base like 2,4,6-trimethylpyridine (collidine:coll) induces the carbinol oxidation to the corresponding aldehydes $\underline{4}$ a-e. In the same reaction (eq. 1) the diazonium salt $\underline{3}$ is concomitantly reduced into benzophenone $\underline{5}$ and fluorenone $\underline{6}$.

$$\frac{1}{1} = \frac{1}{1} = \frac{1}$$

The progress of the photocatalyzed redox reaction (eq. 1) was followed during the irradiation by quantitative HPLC analysis (on a Waters radial pak μ Bondapak C₁₈ cartridge, eluted with different mixtures of MeOH/H₀). The redox reaction (eq. 1) does not occur in the dark or in the absence of RuL₃²⁺². The following scheme represents the proposed mechanism of the photo-induced redox reaction :

The initial step consists of the quenching by an electron transfer of the excited state RuL, 2^{+*} by the diazonium salt 3. As for p-substituted benzene diazonium 1-2 the quenching operates at a diffusional rate (kg = 2.5 x 10^{10} M⁻¹s⁻¹ determined by fluorescence measurements) and leads to the effective build up of the oxidized complex $\operatorname{RuL}_3^{3+}$ in the absence of carbinols. The rapid evolution of the aryl radical 3' issued from the reduction of 3 by $\operatorname{RuL}_3^{2+*}$ prevented the thermal back-reaction between $\operatorname{RuL}_3^{3+}$ and 3'. The radical <u>3'</u> gives benzophenone and fluorenone (ratio \simeq 3:1). Benzophenone arises from <u>3'</u> while fluorenone arises probably from cyclisation of $\underline{3}$ ' as in a Pschorr reaction $\frac{1}{2}$. We used 3 instead of the p-substituted benzene diazonium salt ² for the easier HPLC analysis of the corresponding reduction products issued from 3. The photogenerated strong oxidizing species $\operatorname{RuL}_{2}^{3+}$ is able to oxidize carbinols (see Table for the half-wave potential of carbinols). As the carbinol oxidation to aldehyde requires two-electron and two-proton exchanges, the reaction is strongly improved by adding a base such as collidine. The Table gives the corresponding yields of aldehyde. In the absence of collidine, a markedly lower amount of aldehyde is observed (yield < 30 % with 1a and < 10% with 1b). In the table is shown that the yields of aldehyde depend of the half-wave oxidation potentials of the carbinols. Lower yields were obtained for the less oxidizable alcohols (ld,c). Increasing

Table					
	Alcohols	E _{1/2} (V) (a)	Time of irra- diation (mn)(b)	Yields of aldehydes,%(c)	Quantum yields (d)
1a,	СН₃О-⟨◯⟩-СН₂О	H 1.52	20	100	0.25
<u>1b</u>	$\bigcirc \bigcirc$	1.55	80	61	0.17
lc	с́н₂он √сн₂он	1.63	30	28	0.07
<u>1a</u>	СН ₃ -()-СН ₂ ОН	1.89	60	35	0.03
1e	CH₂OH	2.19	60	21	0.02

- (a) From ref. 6, 7. The values reported in these references were \underline{vs} the Ag/Ag⁺ 10⁻¹ M or Ag/Ag⁺ 10⁻² M reference electrode. The values cited later here have been respectively corrected by the addition of 0.30 V and 0.29 V, and are \underline{vs} s.c.e.
- (b) Time required to reach the maximum yield of aldehyde.
- (c) Yields are determined by H.P.L.C. and are relative to the starting carbinols amounts. An identical quantity of collidine $(1.5 \times 10^{-2} M)$ was used.
- (d) Quantum yields of aldehyde formation, determined by H.P.L.C.

the collidine amount induces an increase of yield for the more easily oxidizable carbinols $(E_{1/2} \text{ carbinol} < E_{1/2} \text{ RuL}_3^{2+/3+})$ For instance, the use of 3×10^{-2} M of collidine instead of 1.5 x 10^{-2} M increases the yield up to 90 % for 4b. On the other hand, as collidine is itself oxidizable $(E_{pa} \simeq 2.0 \text{ V vs s.c.e.})$ its concomitant oxidation 8 by RuL $_3^{3+}$ can explain the low yield observed for carbinols having high oxidation potentials (1 d-e). Consequently, the utilization of a larger amount of base does not increase the aldehyde yields for these alcohols. We are currently exploring the possibility of using the RuL $_3^{2+}$ /diazonium system to photo-oxidize other kind of alcohols.

Aknowledgments :

We are thankful to Professor G. CAUQUIS for his interest in this work.

References and notes

- 1 H. Cano-Yelo and A. Deronzier, J. Chem. Soc., Perkin Trans. II, 1093 (1984).
- 2 H. Cano-Yelo and A. Deronzier, J. Chem. Soc., Faraday Trans I, in press.
- 3 $\operatorname{RuL}_{3}^{2+}$ is used in place of $\operatorname{Ru}(\operatorname{bpy})_{3}^{2+}$ for the better oxidizing power of its oxidized form $(\operatorname{E}_{1/2} \operatorname{RuL}_{3}^{3+/2+} = 1.59 \text{ V} \underline{vs} \text{ s.c.e.}^{4}$ in acetonitrile, while $\operatorname{E}_{1/2} \operatorname{Ru}(\operatorname{bpy})_{3}^{3+/2+} = 1.35 \text{ V} \underline{vs} \text{ s.c.e.}^{5}$)
- 4 P.J. Delaive, J.T. Lee, H.W. Sprinschnik, H. Abruña, T.J. Meyer and D.G. Whitten, J. Amer. Chem. Soc., 99, 7094 (1977) and Adv. Chem. Ser., 168, 28 (1978).
- 5 N.E. Tokel-Takvoryan, R.E. Hemingway, and A.J. Bard, J. Amer. Chem. Soc., <u>95</u>, 6582 (1973).
- 6 H. Lund, Acta Chem. Scand., <u>11</u>, 491 (1957).
- 7 E.A. Mayeda, L.L. Miller, and J.F. Wolf, J. Amer. Chem. Soc., 94, 6812 (1972).
- 8 The final products from the collidine reduction are under investigation.

(Received in France 10 July 1984)